Morphine directly inhibits nociceptors in inflamed skin.

نویسندگان

  • Heather N Wenk
  • Jill-Desiree Brederson
  • Christopher N Honda
چکیده

Peripherally delivered opiates attenuate mechanical and thermal hyperalgesia in experimental models of inflammation, suggesting that activation of peripheral opioid receptors decreases the excitability of nociceptors in inflamed tissues. The current study examines the effects of peripheral morphine sulfate on response properties of sensory neurons in healthy and inflamed skin. Afferent units (185) were isolated from tibial nerve of rats using an in vitro glabrous skin-nerve teased-fiber preparation. Of these, 107 units were from normal healthy skin, and 78 were from inflamed skin 18 h after intraplantar injection of complete Freund's adjuvant. As a population, C-fiber units innervating inflamed skin exhibited properties characteristic of sensitization when compared with units innervating healthy control skin. Mechanical thresholds were lowered, responses to noxious mechanical and thermal stimuli were elevated, a greater proportion of units was spontaneously active, and the average rate of spontaneous discharge was higher. Response properties in other conduction velocity groups remained unchanged. Fifty-eight percent of C and C/Adelta nociceptors innervating inflamed skin were opiate-sensitive, and their excitability was attenuated by direct application of morphine to their receptive fields. All morphine-sensitive units were nociceptors from inflamed skin with conduction velocities <1.3 m/s. Morphine effects were concentration-dependent and naloxone-sensitive, indicating that the effects were receptor-mediated. These findings provide direct evidence that morphine acts through peripheral opioid receptors to inhibit the activity of cutaneous nociceptors under conditions of inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peripheral opioid regulation of nociceptors. Focus on "morphine directly inhibits nociceptors in inflamed skin".

In this issue of the Journal of Neurophysiology (p. 2083– 2097), Wenk et al. describe a series of experiments demonstrating that opioids inhibit the majority of A-delta and C nociceptors innervating inflamed skin (Wenk et al. 2006). As elegantly demonstrated, the in vitro inflamed skin-nerve preparation used in their study exhibits two important properties. First, it contains isolated nocicepto...

متن کامل

Fentanyl decreases discharges of C and A nociceptors to suprathreshold mechanical stimulation in chronic inflammation.

An essential component of mechanical hyperalgesia resulting from tissue injury is an enhanced excitability of nociceptive neurons, termed mechanical sensitization. Local application of opioids to inflamed rat paws attenuates mechanical hyperalgesia and reduces electrical excitability of C-fiber nociceptors in acute injury. Here, we examined the effects of the opioid receptor agonist fentanyl on...

متن کامل

B2 receptor-mediated enhanced bradykinin sensitivity of rat cutaneous C-fiber nociceptors during persistent inflammation.

Bradykinin (BK), which has potent algesic and sensitizing effect on nociceptors, is of current interest in understanding the mechanisms of chronic pain. BK response is mediated by B2 receptor in normal conditions; however, findings that B1 receptor blockade alleviated hyperalgesia in inflammation have been highlighting the role of B1 receptor in pathological conditions. It has not yet been clea...

متن کامل

Role of [Ca]i in the ATP-Induced Heat Sensitization Process of Rat Nociceptive Neurons

Kress, M. and S. Guenther. Role of [Ca]i in the ATP-induced heat sensitization process of rat nociceptive neurons. J. Neurophysiol. 81: 2612–2619, 1999. In inflamed tissue, nociceptors show increased sensitivity to noxious heat, which may account for heat hyperalgesia. In unmyelinated nociceptive afferents in rat skin in vitro, a drop of heat threshold and an increase in heat responses were ind...

متن کامل

Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors

BACKGROUND TRPA1 has been implicated in both chemo- and mechanosensation. Recent work demonstrates that inhibiting TRPA1 function reduces mechanical hypersensitivity produced by inflammation. Furthermore, a broad range of chemical irritants require functional TRPA1 to exert their effects. In this study we use the ex-vivo skin-nerve preparation to directly determine the contribution of TRPA1 to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 4  شماره 

صفحات  -

تاریخ انتشار 2006